
Chapter 3

Data Sets and Parametric

Curves

The chapter discusses ways to describe mathematical quantities other than ex-
pressions, functions and equations. It begins with the Maple commands to plot
data points and fit a polynomial curve to a given set of data both exactly and ap-
proximately. Then it describes how to plot parametric curves, with applications
to inverse functions and polar curves.

This chapter can be safely skipped until data sets, parametric curves, inverse
functions or polar curves are needed.

3.1 Data Points and Curve Fitting

Often, problems involve data points rather than functions or expressions or
equations. You may want to plot these points, and you may want to find a
curve which passes through these points, either exactly or approximately.

Data Sets: In Maple, an ordered list must be enclosed in square brackets [ ].
So [1,2.2] is an ordered pair, or point, while [ [1,2.2], [3,5.5], [6,4.2]

] is an ordered list of points. To plot this list of points, first assign it to a
variable, say mydata

> mydata:=[[1,2.2], [3,5.5], [6,4.2]];

mydata := [[1, 2.2], [3, 5.5], [6, 4.2]]

and check for typing errors. Then issue the plot command

> plot(mydata, style=point);
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Note: You have already seen point plots using the style=point option in
Section 1.4 when we discussed plots of discontinuous functions.

You can change the x- and y-ranges for the plot, either explicitly (as the second
and third options) or by including a view option. You can change the sym-
bol used for the points and the size of the symbol by using the symbol and
symbolsize options. For example:

> plot(mydata,0..7,0..6, style=point, symbol=cross,
> symbolsize=24);
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Deleting the option style=point will draw this data set with connecting line
segments.

> plot(mydata, view=[0..7,0..6]);
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Exact Curve Fitting: Looking at the plot, or for other physical reasons, you
might want to connect the dots with a parabola instead of line segments.

Example 1: Find the expression whose graph is the parabola that passes
through the points (1, 2.2), (3, 5.5), and (6, 4.2). Then graph the parabola and
the points in the same plot.

Solution: First, enter the general formula for a parabola (as a function of x).

> p:=x->a*x^2+b*x+c;

p := x→ a x2 + b x + c

The unknown coefficients a, b, and c must be found so that the parabola passes
through the points (1, 2.2), (3, 5.5), and (6, 4.2). In order for the parabola to
pass through the point (1, 2.2), the equation p(1) = 2.2 must be satisfied. We
enter this equation and label it eq1 :

> eq1:=p(1)=2.2;

eq1 := a + b + c = 2.2

Similarly, the other two equations are.

> eq2:=p(3)=5.5; eq3:=p(6)=4.2;

eq2 := 9 a + 3 b + c = 5.5

eq3 := 36 a + 6 b + c = 4.2

These equations are then solved and the solution is labeled sol.

> sol:=solve({eq1,eq2,eq3},{a,b,c});
sol := {a = −0.4166666667, b = 3.316666667, c = −0.7000000000}

(The order of the variables in your solution may differ.) These values of a, b,
and c can be substituted into p(x) using the subs command.

> q:=subs(sol,p(x));

q := −0.4166666667x2 + 3.316666667x− 0.7000000000

Here the label q is given to the parabola. Note that q is defined as a Maple

expression.

Note: As mentioned in Sections 1.4 and 2.2, two or more expressions (or
functions) can be plotted on the same interval by enclosing the expressions (or
functions) in curly braces { }. However, if the variables or intervals are different,
or if they are two different kinds of plots (expressions vs. functions vs. equations
vs. points) then you must use the display command from the plots package.

To plot the parabola and the points, we first plot them separately and label
the plots:

> p1:=plot(mydata,0..7,0..6, style=point, symbol=cross,
> symbolsize=36):

> p2:=plot(q,x=0..7):
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Notice we ended these commands with colons (rather than semicolons) to sup-
press output. Next we load the plots package and display the two plots (this
time with a semicolon).

> with(plots): display([p1,p2]);
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The points are right on the parabola.

Approximate Curve Fitting: If there are many more points, you may want
to find a curve which best fits the data but does not necessarily go precisely
through the points. This is simple using Maple’s stats and statplots packages.

Example 2: Consider the data points given in the table below:

x 1 2 3 4 5 6 7
y 2.2 3.7 5.5 5.9 5.6 4.2 3.1

Find a parabola which best fits the data. Then graph the parabola and the
points in the same plot.

Solution: Load the stats and statplots packages and define lists of the x-
and y-coordinates in the data.

> with(stats): with(statplots):

> xs:=[1,2,3,4,5,6,7]; ys:=[2.2,3.7,5.5,5.9,5.6,4.2,3.1];

xs := [1, 2, 3, 4, 5, 6, 7]

ys := [2.2, 3.7, 5.5, 5.9, 5.6, 4.2, 3.1]

Plot the data using the scatterplot command from the statplots package.

> p1:=scatterplot(xs,ys, symbol=cross, symbolsize=24): p1;
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Although this method of plotting points might seem more complicated, it has
some advantages. For example, Maple’s built-in curve fitting commands require
the x- and y-coordinates to be entered separately.

From the plot, it appears as though a quadratic function might give a good
approximation to this data. The fit[leastsquare[...]] command from the
stats package will create a quadratic least squares fit.

> fit[leastsquare[[x,y],y=a*x^2+b*x+c]]([xs,ys]);

y = −0.3619047619x2 + 3.030952381x− 0.5714285714

> q:=rhs(%);

q := −0.3619047619x2 + 3.030952381x− 0.5714285714

Let’s see how well we did.

> p2:=plot(q,x=0..8):

> display({p1,p2});
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Not bad.

The fit[leastsquare[...]] command can be easily modified to fit other
types of curves.

Example 3: Consider the population data given in the table below.

Date 1900 1910 1920 1930 1940 1950
Pop. (billions) 1.65 1.75 1.86 2.07 2.30 2.52

1960 1970 1980 1990 1996
3.02 3.70 4.45 5.30 5.77

Enter this data into Maple, obtain a cubic fit and plot the data with the cubic
function.

Solution: The time values are in decades since 1900.

> ts:=[0,1,2,3,4,5,6,7,8,9,9.6]:

> Ps:=[1.65,1.75,1.86,2.07,2.30,2.52,3.02,3.70,4.45,5.30,5.77]:

> fit[leastsquare[[t,P],P=a*t^3+b*t^2+c*t+d]]([ts,Ps]);

P = 0.002325670340 t3 + 0.01914440256 t2 + 0.03583942511 t + 1.676870710

> f:=rhs(%);

f := 0.002325670340 t3 + 0.01914440256 t2 + 0.03583942511 t + 1.676870710
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> p1:=scatterplot(ts, Ps, symbol=cross, symbolsize=24):

> p2:=plot(f,t=0..10):

> display({p1,p2});
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3.2 Parametric Curves

Some curves, such as circles and ellipses, are not the graphs of functions. Other
curves are not even conveniently given by equations. Instead, these figures are
more conveniently described by parametric equations, which are of the form

x = f(t), y = g(t), for a ≤ t ≤ b

where f and g are functions of the parameter t, and a and b are the initial and
final values of t. If you want, you can think of the equation (x, y) = (f(t), g(t))
as giving the position (x, y) of a particle in a plane as a function of time t.
However, in general, t may not represent time (and you do not need to use the
letter t for the parameter). It may represent some other physical or geometrical
quantity such as angle or arclength.

To plot the parametric curve x = f(t), y = g(t), define the component func-
tions as Maple expressions f and g and type the command plot([f,g,t=a..b]).
Note: It is easy to confuse the syntax for a parametric plot with the square
bracket syntax for plotting two expressions at the same time. For parametric
plots, square brackets [ ] must be used and the parameter and its range must
be inside the brackets. To plot two functions, you may use square brackets [ ]

but the variable and range must be outside the brackets.

Example 1: Plot the circle of radius 3 centered at [2, 1].

Solution: The circle may be parametrized by:

x = 2 + 3 cos(θ) y = 1 + 3 sin(θ), for 0 ≤ θ ≤ 2π

where the parameter is the angle θ. To plot the circle we enter the coordinates
as Maple expressions and plot it:
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> f,g:=2+3*cos(theta),1+3*sin(theta);

f, g := 2 + 3 cos(θ), 1 + 3 sin(θ)

> plot([f,g,theta=0..2*Pi], scaling=constrained);
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Note: We have included the scaling=constrained option to equalize the
scales on the axes.

Example 2: Lissajous figures A Lissajous figure is a curve in the plane which
may be parametrized as

(x, y) = (cos(pt), sin(qt))

where p and q are positive integers which are relatively prime (no common
factors other than 1). Plot the Lissajous figure with p = 5 and q = 4.

Solution: Here it is:

> plot([cos(5*t),sin(4*t),t=0..2*Pi]);
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As t varies from 0 to 2π, the x-coordinate oscillates p = 5 times while the y-
coordinate oscillates q = 4 times. (There are 5 bumps on the left and right and
4 bumps on the top and bottom.)
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3.3 Inverse Functions

The inverse of a function f is a function f−1 which undoes f . Thus

y = f−1(x) means x = f(y)

For example, the cube root is the inverse of the cube function.

Example 1: Find the inverse of the function f(x) = 5

√

(x + 4)3 − 7. Then
graph the function, the inverse and the 45◦ line y = x in the same plot.

Solution: Define the equation y = f(x):

> eq1:=y=((x+4)^3-7)^(1/5);

eq1 := y = ((x + 4)3 − 7)(1/5)

Interchange x and y: (The braces make the substitutions occur simultaneously.)

> eq2:=subs({x=y,y=x},eq1);
eq2 := x = ((y + 4)3 − 7)(1/5)

Solve for y:

> sol:=solve(eq2,y);

sol := (7 + x5)(1/3) − 4, − (7 + x5)(1/3)

2
+

1

2
I
√

3 (7 + x5)(1/3) − 4,

− (7 + x5)(1/3)

2
− 1

2
I
√

3 (7 + x5)(1/3) − 4

We only want the real solution. So

> eq3:=y=sol[1];

eq3 := y = (7 + x5)(1/3) − 4

Now we can plot the two functions and the diagonal:

> plot([rhs(eq1),rhs(eq3),x], x=-2..4, y=-2..4,
> linestyle=[SOLID,DASH,DOT], thickness=[5,3,1],
> scaling=constrained);
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Notice that the dashed inverse function is the mirror image (through the di-
agonal) of the original solid function. This is because the inverse function is
obtained by interchanging x and y (and solving for y).

Frequently, it is impossible to solve explicitly for an inverse function. How-
ever, it is still possible to plot the inverse function using a parametric plot. Given
a function y = f(x), its parametric form is x = t, y = f(t). Since the inverse
function y = f−1(x) satisfies x = f(y), its parametric form is x = f(t), y = t.

Example 2: Plot the function f(x) = 4 + x + sin(x) and its inverse.
Note: It is impossible to solve the equation x = 4 + y + sin(y) for y.

Solution: We enter the function, but as an expression in t:

> f:=4+t+sin(t);

f := 4 + t + sin(t)

Then the parametric plot of the function is
> plot([t,f,t=-10..10], view=[-10..10,-10..10],
> scaling=constrained);
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and the parametric plot of the inverse function is
> plot([f,t,t=-10..10], view=[-10..10,-10..10],
> scaling=constrained);

–10

–8

–6

–4

–2
0

2

4

6

8

10

–10–8 –6 –4 –2 2 4 6 8 10

Notice that the inverse is the reflection of the function through the diagonal.

More generally, if x = f(t), y = g(t) is the parametric form of a function,
then x = g(t), y = f(t) is the parametric form of its inverse function.

Sometimes texts obfuscate the issue of inverses by placing undue emphasis
on whether or not the (original or) inverse is a function, i.e., passes “the vertical
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line test.” As shown below, one can always graph the inverse of a “relation”
given by an equation; one simply reverses the variables and uses implicitplot.
In the following example, the original curve is a function since it passes the
vertical line test, but the original is not 1-1 since it does not pass the horizontal
line test. So its inverse relation (with the variables flipped) will not pass a
vertical line test. So the inverse curve exists, but is not a function. We still
have symmetry with respect to the 45◦ line and both graphs are easy to draw
using implicitplot.

Example 3: Plot the relation x2 + y3 = 1 and its inverse and the 45◦ line
in one plot. Give the different relations different colors and thicknesses. Notice
that the original relation is a function. Then select a maximal interval on which
the original function is 1-1. What is the domain of its inverse? Plot them both
with the 45◦ line in one plot.

Solution: We enter the relation, interchange the variables to get the inverse
relation and plot them:

> eqn:=x^2+y^3=1;
> inv:=subs({x=y,y=x},eqn);

eqn := x2 + y3 = 1

inv := y2 + x3 = 1

> with(plots):
> implicitplot([eqn,inv,y=x],x=-3..3,y=-3..3, scaling=constrained,
> thickness=[1,3,1], color=[red,blue,black]);
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Select the interval [0,∞). The domain of the inverse will be (−∞, 1]. We plot
them: (We plot using a 3 instead of ∞.)

> p1:=implicitplot(eqn,x=0..3,y=-3..1, scaling=constrained,
> thickness=1, color=red): p1;

> p2:=implicitplot(inv,x=-3..1,y=0..3, scaling=constrained,
> thickness=3, color=blue): p2;

> p3:=implicitplot(y=x,x=-3..3,y=-3..3): p3;

> display([p1,p2,p3]);
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3.4 Polar Curves

Polar coordinates (r, θ) are related to rectangular coordinates (x, y) by

x = r cos θ y = r sin θ

r =
√

x2 + y2 tan θ =
y

x

A polar curve is a special case of a parametric curve in which the radius r is
given as a function of the angle θ which serves as the parameter. So if r = f(θ)
is a polar equation, then the parametric equations are

x = r cos(θ) = f(θ) cos(θ) y = r sin(θ) = f(θ) sin(θ).

There are three ways to plot a polar curve: as an ordinary parametric curve,
by including the coords=polar option in a plot command, or by using the
polarplot command from the plots package.

Example 1: Plot the polar equation

r = cos(3θ) for 0 ≤ θ ≤ 2π

Solution: To plot the polar equation r = cos(3θ), convert it to parametric
form as

> r1:=cos(3*theta);

r1 := cos(3 θ)

> x1,y1:=r1*cos(theta),r1*sin(theta);

x1 , y1 := cos(3 θ) cos(θ), cos(3 θ) sin(θ)

and plot it as a parametric curve:

> plot([x1,y1,theta=0..2*Pi], scaling=constrained);
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The exact same curve is produced by the plot command with the coords=polar
option:

> plot(r1,theta=0..2*Pi, coords=polar, scaling=constrained);

and by the polarplot command from the plots package:

> with(plots):

> polarplot(r1,theta=0..2*Pi, scaling=constrained);

Example 2: Show that the polar equation r =
1

1− sin θ
is a parabola and

plot it.

Solution: Enter r as an expression and as an equation.

> r1:=1/(1-sin(theta)); eq1:=r=r1;

r1 :=
1

1− sin(θ)

eq1 := r =
1

1− sin(θ)

Substitute sin(θ) =
y

r
and r =

√

x2 + y2, and solve for y: (Notice the substitu-

tions are done successively, not simultaneously, by leaving out the braces.)

> eq2:=subs(sin(theta)=y/r, r=sqrt(x^2+y^2), eq1);

eq2 :=
√

x2 + y2 =
1

1− y
√

x2 + y2

> sol:=solve(eq2,y);

sol := x I, −I x,
x2

2
− 1

2
Ignore the imaginary solutions. So the equation is

> y=sol[3];

y =
x2

2
− 1

2
which is a parabola. Now plot it for 0 ≤ θ ≤ 2π.
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> polarplot(r1,theta=0..2*Pi);
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Notice that there are extraneous lines and the ranges are way too large due to
the fact that the expression r is large for θ near π/2. To view a portion of the
graph near the origin, add the view option:

> polarplot(r1,theta=0..2*Pi, view=[-4..4,-3..5]);
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3.5 Summary

• Given a set of data as a list of points

> mydata:=[[ , ], [ , ], ..., [ , ]];

plot it using

> plot(mydata, style=point);

and be able to find a polynomial passing through these points.

• Given a set of data as two lists of x- and y-coordinates

> xs:=[ , , ..., ]; ys:=[ , , ..., ];

plot it using

> with(stats): with(statplots):

> p1:=scatterplot(xs,ys): p1;

Also find the curve which best fits the data using
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> fit[leastsquare[[x,y],y=expr]]([xs,ys]);

> q:=rhs(%);

and plot it with the data set using

> p2:=plot(q,x):

> display({p1,p2});

• Given a parametric curve

x = f(t) y = g(t), for a ≤ t ≤ b

plot it using

> plot([f,g,t=a..b], scaling=constrained);

where f and g are expressions in t.

• The inverse of a function f is the function f−1 defined by

y = f−1(x) means x = f(y)

To find f−1 start with the equation

> eq1:=y=expr;

where expr is an expression in x. Interchange x and y:

> eq2:=subs({x=y,y=x},eq1);
and solve for y:

> eq3:=y=solve(eq2,y);

(It may be necessary to select the real solution.) Then the function and
its inverse and the diagonal may be plotted using

> plot([rhs(eq1),rhs(eq3),x], x=a..b, y=c..d,
> scaling=constrained);

• If a parametric curve x = f(t), y = g(t) is the graph of a function, then
the inverse function is given parametrically as x = g(t), y = f(t). The
function and its inverse may be plotted using

> plot({[f,g,t=a..b],[g,f,t=a..b]}, view=[c..d,c..d],

> scaling=constrained);

• The polar curve

r = f(θ) for a ≤ θ ≤ b

may be plotted using

> polarplot(f, theta=a..b, scaling=constrained);

where f is an expression in θ.
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3.6 Exercises

1. Find the cubic polynomial whose graph passes through the points (2, 3.2),
(3, 2.6), (5, 1.2), and (7, 3.3). Graph the points and your answer and put
them into one plot using the display command.

2. Draw a map of Texas. To plot a map of Texas, enter the following two
lists for the northern and southern boundaries of Texas.

> north:=[[0,0], [3,0], [3,4.5], [6,4.5], [6,2.2], [7,2.1],

> [ 8,1.8], [9,1.9], [10,1.8], [11,1.7], [11,-2.2]];

> south:=[[0,0], [1,-1.1], [2,-2.5], [3,-2.9], [4,-2.3],

> [5,-2.8], [6,-4.4], [7,-5.8], [8,-6.1], [9,-3.3],

> [10,-2.8], [11,-2.2]];

Here, the origin is the westernmost corner of Texas (near El Paso) and
the x-axis is the extension of the east-west border between New Mexico
and Texas. Each unit represents approximately 69 miles. After entering
these lists, execute:

> plot({north, south});

3. The general equation of a circle is

x2 + y2 + ax + by = c

Find the equation of the circle (i.e., find a, b, and c) that passes through
the three points (2, 1), (4,−1), and (1, 7). Plot the circle with the points.
Hint: It is not possible to graph the circle with a function of the form
y = f(x) (why?); so it is easier to work with expressions using the subs

command to obtain the necessary three equations. Start by assigning the
above equation to the label circle. Substitute the three points into the
circle to obtain three equations such as eq1:=subs(x=2,y=1,circle);.
Then solve these three equations for a, b, and c and substitute them into
the circle. Finally, plot the three points using plot and your circle using
implicitplot and combine them using display. Don’t forget you need
with(plots).

4. Suppose a rubber band is stretched and the following data is recorded
relating the restoring force to displacement.

Disp. (meters) .02 .03 .05 .06 .09 .11 .12
Force (Newtons) .10 .17 .28 .35 .52 .57 .65

.14 .16 .19 .22 .25 .27

.71 .77 .86 .98 1.04 1.10

Determine whether this data is best approximated using a linear, quadratic
or cubic fit. In each case, plot the data against the curve.
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5. The following table lists a measurement of the specific heat of air at various
temperatures.

Temperature (K) 300 400 500 600
Sp. Heat (J/gm-K) 1.0045 1.0134 1.0296 1.0507

700 800 900
1.0743 1.0984 1.1212

Determine a linear curve that approximates this data, and plot the curve
and the data in the same graph. In addition, compute the predicted
values for specific heat (given by the linear approximation) corresponding
to the temperature values in the table. Is there a relationship between the
average of the predicted values and the average of the specific heat values
in the table?

6. The following table lists a measurement of the specific heat of air at higher
temperatures.

Temperature (K) 1000 1500 2000 3000
Sp. Heat (J/gm-K) 1.1910 1.2095 1.2520 1.2955

Determine a quadratic curve that approximates this data. Plot the curve
and the data in the same graph. In addition, compute the predicted values
for specific heat (given by the quadratic approximation) corresponding to
the temperature values in the table. Is there a relationship between the
average of the predicted values and the average of the specific heat values
in the table?

7. Find the exact cubic curve passing through the data points of Exercise
6, and plot the cubic curve and the data in the same graph. Does the
quadratic curve of Exercise 6 or the cubic curve of this exercise give a
better description of the data? Be sure to consider extrapolating to higher
and lower temperatures.

8. The following Maple command makes it easy to generate random data
sequences of integers between −100 and 100.

> r:=rand(-100..100):

For example, if you want to create random data sequences named xs and
ys containing 10 data values each, simply do the following:

> xs:=[seq(r(),i=1..10)];

> ys:=[seq(r(),i=1..10)];

Note: The values obtained will be different each time you execute these
commands.

Use Maple to create a random pair of data sequences named xs and ys

containing 10 data values each. Find a linear curve that approximates
this data and compute the predicted y values (given by the linear approx-
imation) for the corresponding listed x values in xs. Compare the average
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of the predicted y values to the given values in ys. Repeat this process 5
times. What do you conclude?

9. The ellipse
x2

9
+

y2

16
= 1 may be parametrized by x = 3 cos(t) and y =

4 sin(t). Check this by substituting the parametrization into the equation.
Then, plot the ellipse using a parametric plot with constrained scaling.

10. Show that the parametric curve x = 3 cosh(t), y = 4 sinh(t) is part of the

hyperbola
x2

9
− y2

16
= 1. Then plot the piece for −2 ≤ t ≤ 2. Recall that

cosh(t) =
et + e−t

2
, sinh(t) =

et − e−t

2
and cosh2(t)− sinh2(t) = 1

11. For each function, find the inverse function and plot the function and its
inverse in the same plot on the given interval with the inverse thicker.

(a) f(x) =
√

144− 9x2 for 0 ≤ x ≤ 12

(b) f(x) =
3

√

1000− 125x3 for 0 ≤ x ≤ 10

(c) f(x) = x ex for −1 ≤ x ≤ 1 Note: ex is entered as exp(x). Also
LambertW is defined as precisely this inverse function.

12. For each function, plot the function and its inverse in the same plot with
the inverse thicker.

(a) y = x + cos(x) for −2π ≤ x ≤ 2π

(b) y = x3 + 16x for −2 ≤ x ≤ 2

(c) x = t3 + 2t, y = t3 + 3t for 0 ≤ t ≤ 2

13. Graph each of the following equations by hand and then check your an-
swers with a Maple plot. You may need to restrict the view on (a).

(a) r =
4

1 + cos(θ)

(b) r = 1 + 3 cos(θ)

(c) r = 4 sin(3θ)

(d) r = 3 cos(4θ)

(e) r2 = 1 + sin2(θ)

(f) r = θ, for
−3π

2
≤ θ ≤ 3π

2
(Happy Valentine’s Day)


